Acoustic and lexical resource constrained ASR using language-independent acoustic model and language-dependent probabilistic lexical model

نویسندگان

  • Ramya Rasipuram
  • Mathew Magimai-Doss
چکیده

One of the key challenges involved in building statistical automatic speech recognition (ASR) systems is modeling the relationship between subword units or “lexical units” and acoustic feature observations. To model this relationship two types of resources are needed, namely, acoustic resources i.e., speech data with word level transcriptions and lexical resources where each word is transcribed in terms of subword units. Standard ASR systems typically use phonemes or phones as subword units. However, not all languages have well developed acoustic and phonetic lexical resources. In this paper, we show that the relationship between lexical units and acoustic features can be factored into two parts through a latent variable, namely, an acoustic model and a lexical model. In the acoustic model the relationship between latent variables and acoustic features is modeled, while in the lexical model a probabilistic relationship between latent variables and lexical units is modeled. We elucidate that in standard hidden Markov model based ASR systems, the relationship between lexical units and latent variables is one-to-one and the lexical model is deterministic. Through a literature survey we show that this deterministic lexical modeling imposes the need for well developed acoustic and lexical resources from the target language or domain to build an ASR system. We then propose an approach that addresses both acoustic and phonetic lexical resource constraints in ASR system development. In the proposed approach, latent variables are multilingual phones and lexical units are graphemes of the target language or domain. We show that the acoustic model can be trained on domain-independent or language-independent resources and the lexical model that models a probabilistic relationship between graphemes and multilingual phones can be trained on a relatively small amount of transcribed speech data from the target domain or language. The potential and the efficacy of the proposed approach is demonstrated through experiments and comparisons with other approaches on three different ASR tasks: non-native Draft version of the accepted paper and accented speech recognition, rapid development of an ASR system for a new language, and development of an ASR system for a minority language.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grapheme-based Automatic Speech Recognition using Probabilistic Lexical Modeling

Automatic speech recognition (ASR) systems incorporate expert knowledge of language or the linguistic expertise through the use of phone pronunciation lexicon (or dictionary) where each word is associated with a sequence of phones. The creation of phone pronunciation lexicon for a new language or domain is costly as it requires linguistic expertise, and includes time and money. In this thesis, ...

متن کامل

On recognition of non-native speech using probabilistic lexical model

Despite various advances in automatic speech recognition (ASR) technology, recognition of speech uttered by non-native speakers is still a challenging problem. In this paper, we investigate the role of different factors such as type of lexical model and choice of acoustic units in recognition of speech uttered by non-native speakers. More precisely, we investigate the influence of the probabili...

متن کامل

On-line learning of acoustic and lexical units for domain-independent ASR

We are interested in on-line acquisition of acoustic, lexical and semantic units from spontaneous speech. Traditional ASR techniques require the domain-speci c knowledge of acoustic, lexicon data and more importantly the word probability distributions. In this paper we propose an algorithm for unsupervised learning of acoustic and lexical units from out-of-domain speech data. The new lexical un...

متن کامل

Improving grapheme-based ASR by probabilistic lexical modeling approach

There is growing interest in using graphemes as subword units, especially in the context of the rapid development of hidden Markov model (HMM) based automatic speech recognition (ASR) system, as it eliminates the need to build a phoneme pronunciation lexicon. However, directly modeling the relationship between acoustic feature observations and grapheme states may not be always trivial. It usual...

متن کامل

Improving Under-Resourced Language ASR Through Latent Subword Unit Space Discovery

Development of state-of-the-art automatic speech recognition (ASR) systems requires acoustic resources (i.e., transcribed speech) as well as lexical resources (i.e., phonetic lexicons). It has been shown that acoustic and lexical resource constraints can be overcome by first training an acoustic model that captures acoustic-to-multilingual phone relationships on languageindependent data; and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Speech Communication

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2015